

HTG9696A-31B-28C05

产品名称(Product name) 黑白点阵 COG

THTG9696A-31B-28C05 型 号 (Model)

20140809// 编 号 (Part number)

日 期 (Date) Y/ 2014-08-18

A/0

深圳市鑫洪泰电子科技有限公司 Shenzhen Hot Display Technology Co.,Ltd 编制 审核 核准 Approved by Checked by Prepared by 编码: QR-R-011 序号:

Rev.	Descriptions	Date
01	Prelimiay Release	2014-08-18

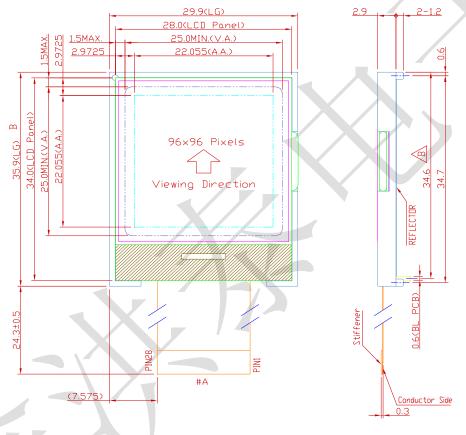
Table of Content

1.	Basic Specifications	 3
1.1	Display Specifications	 3
1.2	Mechanical Specifications	 3
1.3	Circuit Diagram	 3
1.4	Terminal Function	 4
1.5	Product Outline	 5
1.6	Schematic Diagram	 6
2.	Absolute Maximum Ratings	 7
3.	Electrical Characteristics	 7
3.1	DC Characteristics	 7
3.2	LED Backlight Circuit	 7
3.3	AC Characteristics	 8
4.	Function specifications	 12
4.1	Microprocessor Interface Logic	 12
4.2	Basic Setting	 13
4.3	Resetting the LCD module	 13
4.4	Display Memory Map	 14
4.5	Display Commands	 15
4.6	Basic Operating Sequence	 22
5.	Inspection Standards	 24
6.	Handling Precautions	 25
6.1	Mounting method	 25
6.2	Cautions of LCD handling and cleaning	 25
6.3	Caution against static charge	 25
6.4	Packaging	 25
6.5	Caution for operation	 25
6.6	Storage	 25
6.7	Safety	 25
7	Packaging specifications	 26

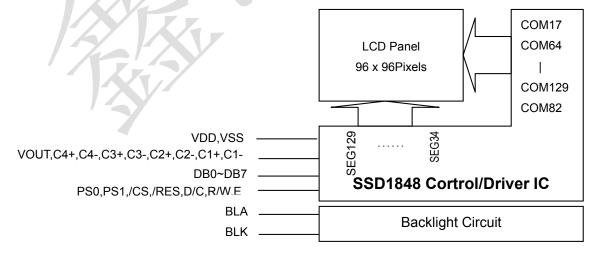
1. Bsaic Specifications

1.1 Display Specifications

1>LCD Display Mode : FSTN, Positive, Transflective


2>Viewing Angle : 6H

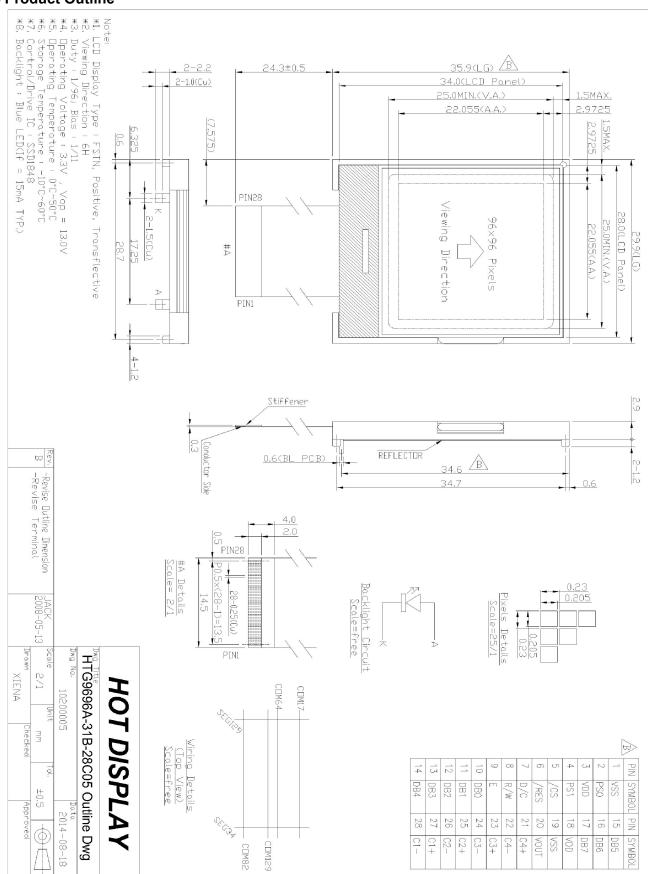
3>Driving Method : 1/96 Duty, 1/11 Bias

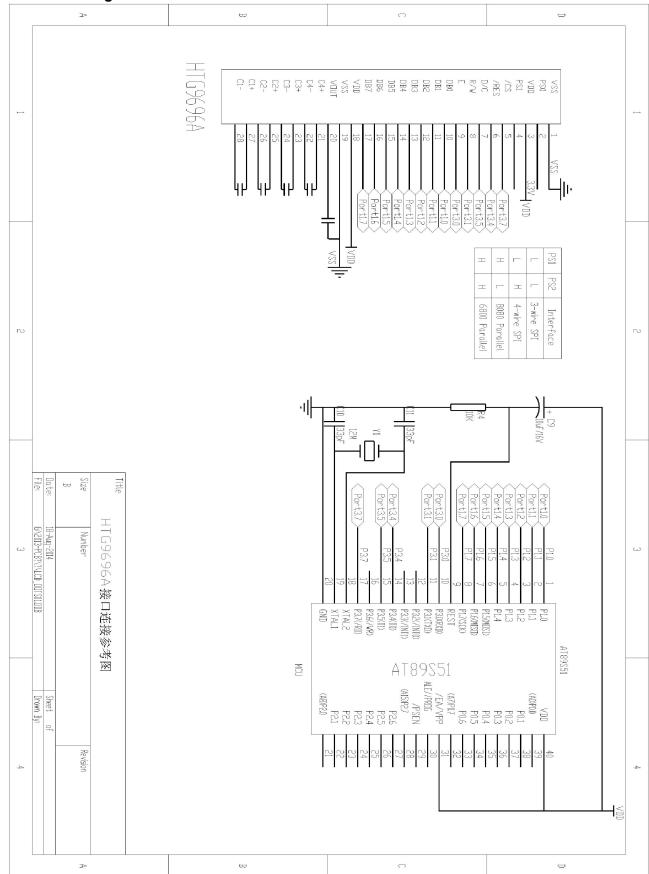

4>Backlight : Blue LED

1.2 Mechanical Specifications

1>Outline Dimension : 29.9x 35.9 x 2.8mm (See attached Outline Drawing for Details)

1.3 Circuit Diagram




1.4 Terminal Function

Pin No.	Pin Name	Function
1	VSS	This is a logic ground pin. It must connect to GND from external supply
2	PS0	PS0 and PS1 determine the interface protocol between the driver and MCU. Refer to the following table for details. PS0 PS1 Interface L J 3-wire SPI (write only) L H 4-wire SPI (write only) H L 8080 Parallel interface(read and write allowed) H H 6800 Parallel interface (read and write allowed) Note: The above H refers to either VDDIO while L refers VSS
3	VDD	This pin is the system power supply pin of the logic block.
4	PS1	Like SP0
5	/CS	This pin is chip select input.
6	/RES	This pin is reset signal input. When the pin is low, initialization of the chip is executed.
7	D/C	This input pin is to identify display data/command cycle.
8	R/W	When R/W = "H": Read. When R/W = "L": Write.
9	E	This pin is MCU interface input. When 6800 interface mode is selected, this pin will be used as the Enable (E) signal. Read/ write operation is initiated when thispin is pulled high and the chip is selected. When 8080 interface mode is selected, this pin is the Read (RD) control signal input. Data read operation is initiated when this pin is pulled low and the chip is selected.
10~17	DB0~DB7	8-bit data bus lines
18	VDD	This pin is the system power supply pin of the logic block.
19	VSS	This is a logic ground pin. It must connect to GND from external supply
20	VOUT	This pin is the most positive LCD driving voltage.
21	C4+	
22	C4-	
23	C3+	
24	C3-	Connect an external capacitor to these pins when 4X, 5X, 6X or 7X DC-DC Converter Factor is set. Please refer to Figure 13-3 for booster
25	C2+	configuration.
26	C2-	
27	C1+	
28	C1-	

1.5 Product Outline

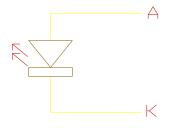
1.6 Schematic Diagram

2. Absolute Maximum Ratings

Items	Symbol	MIN.	MAX.	Unit	Condition
Supply Voltage	Vdd	-0.3	+3.6	V	Vss = 0V
Input Voltage	Vin	-0.3	V _{DD} +0.3	V	Vss = 0V
Operating Temperature	Тор	0	+50	$^{\circ}$ C	No Condensation
Storage Temperature	Tst	-10	+60	$^{\circ}$ C	No Condensation

3. Electrical Characteristics

3.1 DC Characteristics

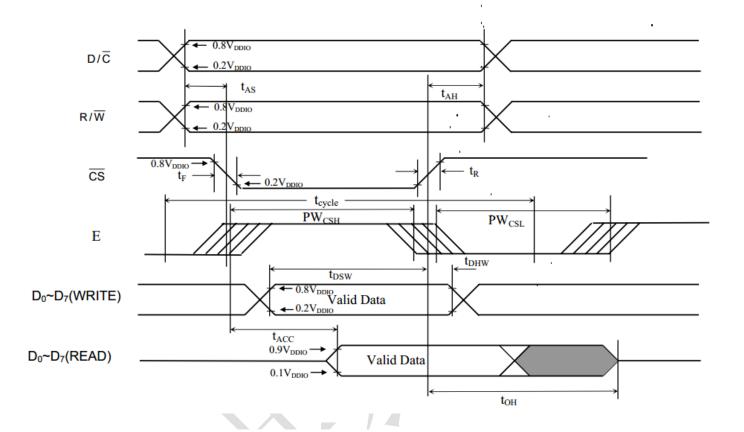

Vss = 0V,Top = 25 [°]C

						700 07,10p 200
Items	Symbol	MIN.	TYP.	MAX.	Unit	Condition
Operating Voltage	VDD	3.0	3.3	3.6	V	VDD
Input High Voltage	VIH	0.8 x VDDIO	/	VDDIO	V	/CS1,/RES,A0,E ,
Input Low Voltage	VIL	0.0	//	0.1 x Vddio	V	R/W,D0~D7,C86
Output High Voltage	Vон	0.9 x VDD	1-7	VDDIO	V	D0~D7
Output Low Voltage	Vol	0.0		0.1 x VDDIO	V	D0~D7
Operation Current	lop	100		220	μΑ	VDD=3.0V
Access mode supply current drain	lac		450	550	μΑ	Ta=25℃
Display mode supply Current drain	lpp	150	260	450	μA	Ta=25℃

3.2 LED Backlight Circuit

Vss = 0V,Top = 25° C

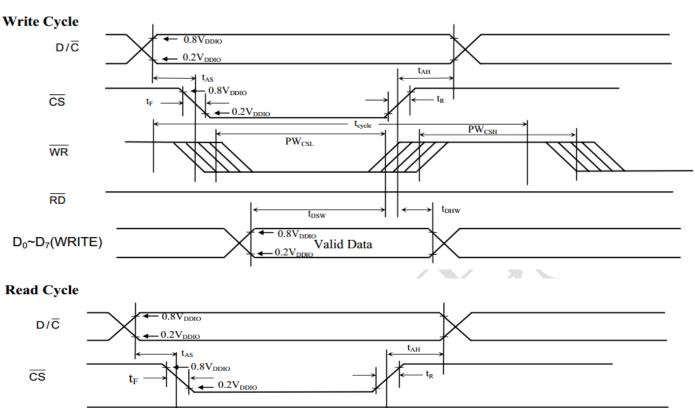
Items	Symbol	MIN.	TYP.	MAX.	Unit	Condition
Forword Voltage	Vf BLA	1	3.1	1	V	VDD
Forword Current	If BLA	ı	10	15	mA	VDD



3.3 AC Characteristics

3.3.1 6800 Mode System Bus Timing

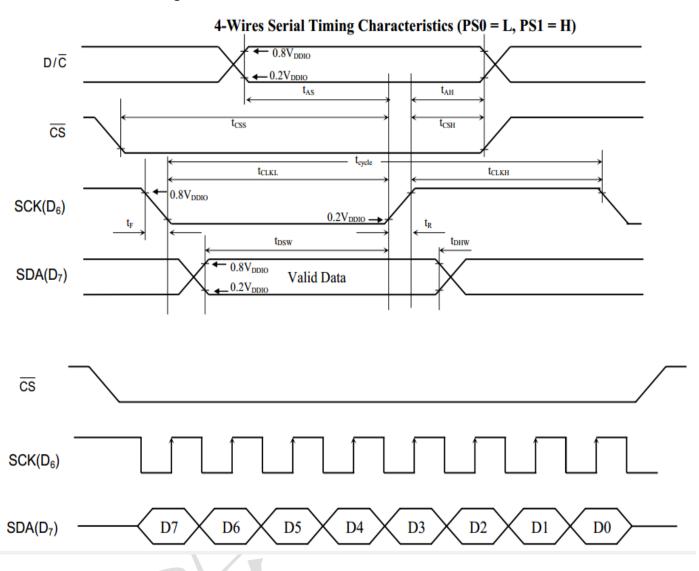
Parallel 6800-series Interface Timing Characteristics (PS0 = H, PS1 = H)



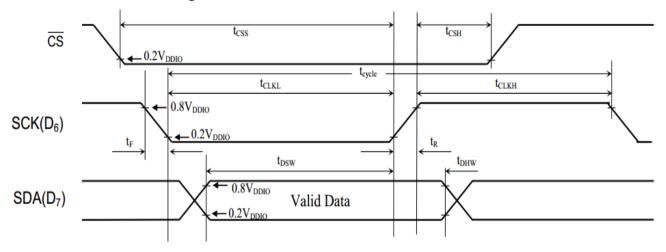
Parallel 6800-series Interface Timing Characteristics

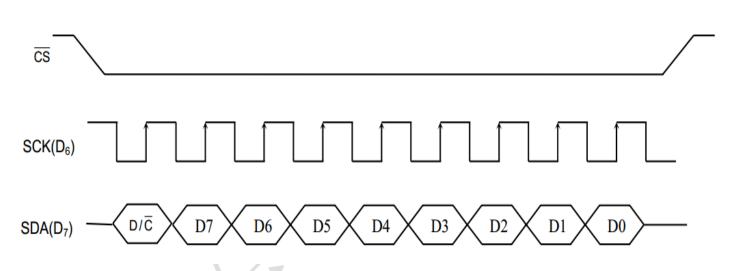
Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time (write cycle)	-	100	-	ns
PW_{CSL}	Control Pulse Low Width	-	50	-	ns
PW_{CSH}	Control Pulse High Width	-	50	-	ns
$t_{\rm F}$	Fall Time	-	-	10	ns
t_R	Rise Time	-	-	10	ns
t _{AS}	Address Setup Time	-	10	-	ns
t_{AH}	Address Hold Time	-	10	-	ns
t_{DSW}	Data Setup Time	-	60	-	ns
t_{DHW}	Data Hold Time	-	25	-	ns
t _{ACC}	Data Access Time	-	275	-	ns
t _{OH}	Output Hold time	-	125	-	ns

3.3.2 8080ModeSystemBusTiming


Parallel 8080-series Interface Timing Characteristics (PS0 = H, PS1 = L)

_	
cs -	$t_{\rm AS}$ $t_{\rm AH}$ $0.8V_{\rm DDIO}$ $0.2V_{\rm DDIO}$
\overline{WR}	
****	\leftarrow t_{cycle} \rightarrow
	PW _{CSL}
RD	T West
	t _{ACC}
D ₀ ~D ₇ (READ)	
ט טייוול אויייי	Valid Data
	\leftarrow t_{OH}


Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time (write cycle)	-	100	-	ns
PW _{CSL}	Control Pulse Low Width	-	50	-	ns
PW_{CSH}	Control Pulse High Width	-	50	-	ns
$t_{\rm F}$	Fall Time	-	-	10	ns
t_{R}	Rise Time	-	-	10	ns
t _{AS}	Address Setup Time	-	10	-	ns
t_{AH}	Address Hold Time	-	10	-	ns
t_{DSW}	Data Setup Time	-	60	-	ns
$t_{ m DHW}$	Data Hold Time	-	25	-	ns
t _{ACC}	Data Access Time	-	275	-	ns
t _{OH}	Output Hold time	-	125	-	ns


3.3.3 4-Wires Serial Timing Characteristics

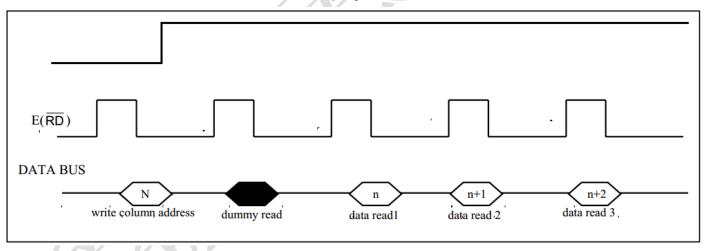
Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	-	100	-	ns
f_{CLK}	Serial Clock Cycle Time SPI Clock tolerance = +/- 2 ppm	-	10	-	MHz
t _{AS}	Register select Setup Time	20	-	-	ns
t _{AH}	Register select Hold Time	30	-	-	ns
t _{CSS}	Chip Select Setup Time	-	35	-	ns
t _{CSH}	Chip Select Hold Time	-	50	-	ns
t _{DSW}	Write Data Setup Time	10	-	-	ns
t _{DHW}	Write Data Hold Time	10	-	-	ns
t _F	Fall Time	-	-	10	ns
t _R	Rise Time	-	-	10	ns
t _{CLKL}	Clock Low Time	-	50	-	ns
t _{CLKH}	Clock High Time	-	50	-	ns

3.3.4 3-Wires Serial Timing Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	-	100	-	ns
f_{CLK}	Serial Clock Cycle Time SPI Clock tolerance = +/- 2 ppm	-	10	-	MHz
t _{CSS}	Chip Select Setup Time	-	35	-	ns
t_{CSH}	Chip Select Hold Time	-	50	-	ns
t_{DSW}	Write Data Setup Time	-	35	-	ns
t _{OHW}	Write Data Hold Time	-	50	-	ns
$t_{\rm F}$	Fall Time	-	-	10	ns
t _R	Rise Time	-	-	10	ns
t _{CLKL}	Clock Low Time	-	50	-	ns
t _{CLKH}	Clock High Time	-	50	-	ns

4. Function specifications

4.1 Microprocessor Interface Logic


The Microprocessor Interface unit consists of three functional blocks for driving the 6800-series parallel interface, 8080-series parallel interface, 3-lines serial peripheral interface and4-lines serial peripheral interface. The selection of different interface is done by PS0 to PS1 pins. Please refer to the pin descriptions on page 14.

MPU Parallel 6800-series Interface

The parallel Interface consists of 8 bi-directional data pins (D7– D0), W / R, C / D, E, CS. W / R (WR) input high indicates a read operation from the Graphical Display Data RAM (GDDRAM) or the status register. W / R input low indicates a write operation to Display Data RAM or Internal Command Registers depending on the status of C / D input. The E input serves as data latch signal (clock) when high provided that CS is low. Please refer to Figure 12-1 on page 52 for Parallel Interface Timing Diagram of 6800-series microprocessors.

In order to match the operating frequency of the GDDRAM with that of the MCU, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in the following figure.

Display data

MPU Parallel 8080-series Interface

The parallel interface consists of 8 bi-directional data pins D7 – D0, RD, WR, C / D , CS. RD input serves as data read latch signal (clock) when low provided that CS is low. Whether reading the display data from GDDRAM or reading the status from the status register is controlled by C / D . WR input serves as data write latch signal (clock) when low provided that CS is low. Whether writing the display data to the GDDRAM or writing the command to the command register is controlled by C / D . A dummy read is also required before the first actual display data read for 8080-series interface. Please refer to Figure 12-2 on page 53 for Parallel Interface Timing Diagram of 8080-series microprocessors

MPU 4-wires Serial Peripheral Interface

The 4-wires serial peripheral Interface consists of serial clock SCK, serial data SDA, C / D , CS. SDA is shifted into 8-bit shift register on every rising edge of SCK in the order of data bit 7, data bit 6 data bit 0. C / D is sampled on every eighth clock to determine whether the data byte in the shift register is written to the Display Data RAM or command register at the same clock. Please refer to Figure 12-3 on page 54 for 4-wires serial interface timing.

MPU 3-wires Serial Peripheral Interface

The operation is similar to 4-wires serial peripheral interface while C / D is not used. There are Al together 9-bits will be shifted into the shift register on every ninth clock in sequence: C / D bit, D7 to D0 bit. The C / D bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (C / D bit = 1) or the command register (C / D bit = 0). Please refer to Figure 12-4 on page 55 for 3-wires serial interface timing

4.2 Basic Setting

To drive the LCD module correctly and provide normally display, please use the following seting

- 1 > ADC = 0 (normal)
- 2> SHL select = 1(reverse)
- 3> LCD Bias Select = 1/9
- 4> Initial Display Line = 0
- 5> Entire Display ON/OF = OFF(normal)
- 6> Reverse Display ON/OF = OFF(normal)
- 7> Set Power Control Set: Voltage follower = ON, voltage converter = ON, Voltage regulator = ON
- 8> Display ON/OF =ON

4.3 Resetting the LCD module

The LCD module should be initialized bu using /RES terminal.

While turning on the VDD and VSS power supply, maintain /RES terminal at LOW level, After the Power supply stabilized, release the reset terminal(/RES = High)

4.4 Display Memory Map

			_															
		$\overline{}$	Column															
	D44 - A	+									olum				_			
	P11 = 0		0					1				23				24		
.CD Read	_	-	_	_	_		_		_		_	_	_			_	_	
Direction	Dat	D7	D5	D3	D1	D7	D5	D3	D1		D7	D5	D3	D1	D7	D5	D3	D1
•	Page	D6							D0		D6	D4		D0				D0
BLOCK	P10 = 0																-	
	0																	
0	1																	
	2																	
	3																	
	4	_											L					
1	5	_					L											
'	6	╙	L				L						L			L		
	7																	
:	:		L		L		L			:	L		L					
:	;						L			:								
:	:									:								
:	:		┕		L		L			:	L		L					
:	:						L			:								
:	:				L		L			:	L		L					
:	:						L			:			L					
:	:		_				L			:	L		L					
:	:	_	_				L			1			L					
	88	_																
23	89	\perp					L						L					
20	90	_					L						L					
	91																	
	92	_											L					
24	93																	
4	94																	
	95																	

COMMON OUTPUTS

COM17
COM18
COM19
COM20
COM21
::
:
COM62
COM63
COM64
COM129
COM128
COM127
:
:
:
COM85
COM84
COM83
COM82

SEGMENT OUTPUTS

G129	3128	G127	G126	G125	G124	G123	G122	 	 EG41	G40	EG39	G38	:G37	:C36	G35	:G34	
SEC	SE		 SE	SE	SE	SE	SE	SE	SE	SE							

Mapping depends on the COM output scan direction

4.5 Display Commands

D/C	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	15	0	0	0	1	0	1	0	1		Set the start column address by X ₅ X ₄ X ₃ X ₂ X ₁ X ₀
1		0	0	X_5	X_4	X_3	X_2	X_1	X_0	Address	Set the end column address by Y ₅ Y ₄ Y ₃ Y ₂ Y ₁ Y ₀
1		0	0	Y_5	Y_4	Y_3	Y_2	Y_1	Y_0		Column address = 00000000b (POR)
											Column address is in a range of 0~32 (0x00~0x20).
0	75	0	1	1	1	0	1	0			Set the start page address by X ₇ X ₆ X ₅ X ₄ X ₃ X ₂ X ₁ X ₀
1		X_7	X_6	X_5	X_4	X_3	X_2	X_1	X_0	Address	Set the end page address by Y ₇ Y ₆ Y ₅ Y ₄ Y ₃ Y ₂ Y ₁ Y ₀
1		Y_7	Y_6	Y_5	Y_4	Y_3	Y_2	Y_1	Y_0		Page address = 00000000b (POR)
											Page address is in a range of 0~129 (0x00~0x81).
0	BB	1	0	1	1	1	0	1	1	Set COM	X ₂ X ₁ X ₀ ROW0ROW64 ROW65ROW129
1		*	*	*	*	*	X_2	X_1	X_0	Output Scan	0 0 0 COM0 -> COM64 COM65-> COM129(POR)
							-	1		Direction	0 0 1 COM0->COM64 COM129<-COM65
											0 1 0 COM64<-COM0 COM65->COM129
											0 1 1 COM64<-COM0 COM129<-COM65

D/C	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	BC	1	0	1	1	1	1	0		Set Data	a) Normal or Reverse page/column/RAM access/scan
	DC	*	*					_	-	Output Scan	directions
1				_	_	P ₁₃	P ₁₂	P ₁₁	P ₁₀	Direction and	
1		*	*	P ₂₅	P ₂₄	P ₂₃	P ₂₂	P ₂₁	P ₂₀	Direction and	P ₁₀ = 1: set page address to normal display (POR)
1		*	*	*	P ₃₄	P ₃₃	P_{32}	P_{31}	P ₃₀	Grayscale	r 10 - 1. set page address to inverse display
											P ₁₁ = 0: set column address to normal rotation (POR)
											P ₁₁ = 1: set column address to inverse rotation
											$P_{12} = 0$: set scan direction to column scan(POR)
											P ₁₂ = 1: set scan direction to page scan
											P ₁₃ = 0: set normal scan direction (POR)
											P ₁₃ = 1: set inverse scan direction
											b) Gray-scale setting
											X = Light gray PWM count (POR 5 counts)
											Y = Dark gray PWM count (POR 10 counts)
											$P_{22}P_{21}P_{20} = X - 1 (POR \ 100)$
											$P_{24}P_{24}P_{23} = Y - X - 1 \text{ (POR 100)}$
											Remark: Y-X≤8
											Remark. 1-X20
											* Remarks: The PWM count for White and Black are 0
											and 15 respectively.
											$P_{30} = 0$: PWM (POR)
											$P_{34} = 0$:
											r ₃₄ -0.
											White Light Gray Dark Gray Black
											0% 33% 66% 100%
											P ₃₄ = 1:
											THE LINE OF THE LOCAL PROPERTY.
											White Light Gray Dark Gray Black 0% X/15 Y/15 100%
											076 X/13 1713 10076
											$P_{30} = 1$: FRC
											30
											$P_{31} = 0$: 3-frame FRC (POR)
											White Light Gray Dark Gray Black
											0% 33% 66%, 100%
											P ₃₁ = 1: 4-frame FRC
											131 - 1, 4-Hame PRC
											P ₃₃ P ₃₂ White Light Gray Dark Gray Black
											00(POR) 0% 25% 75%, 100%
											01 0% 50% 75% 100%
											10 0% 25% 50% 100% 11 Reserved
											11 Neserveu
										l .	

D/C	TT	D7	D/	D.F.	D.4	Da	Da	D1	DA	h	D
D/C										Command	Description
0	CA	1	1	0	0	1	0	1	ı	Set Display Control	Driver duty selection
1		0	0	0	0	0	0	0		Control	Select driver duty from 1/16 to 1/128. As
1			*	Y ₅		_	_	Y ₁	Y ₀		Y ₅ Y ₄ Y ₃ Y ₂ Y ₁ Y ₀ is increased from 000011b to 011111b, the number of display lines, N is increased
1		0	0	0	0	0	0	0	0		at the same rating. To specify the $Y_5Y_4Y_3Y_2Y_1Y_0 =$
											(N/4)-1 where 1/N is the driver duty.
											(1474)-1 where 1714 is the driver daty.
											$Y_5Y_4Y_3Y_2Y_1Y_0 = 1000000b$ for 1/130 duty.
0	AA	1	0	1	0	1	0	1	0	Set Area Scroll	a) Top Block Address
1		X ₇	-	X ₅		X ₃		X_1	X ₀	oct i fied octon	X ₇ X ₆ X ₅ X ₄ X ₃ X ₂ X ₁ X ₀ is used to specify the row
		Y ₇		_				_	_		address at the top of the scrolling area.
1			Y ₆	Y5		Y3		Y ₁	Y ₀		Top row address = 00000000b (POR)
1		Z ₇	Z ₆	Z ₅	Z4 *	Z ₃	Z ₂	Z_1 P_{41}	Z ₀ P ₄₀		
*								- 41	- 40		b) Bottom Block Address
											Y ₇ Y ₆ Y ₅ Y ₄ Y ₃ Y ₂ Y ₁ Y ₀ is used to specify the row
											address at the bottom of the scrolling area.
											Bottom row address = 00000000b (POR)
											c) Number of specified Blocks
											The number of specified blocks = Number of (Top
											fixed area + Scroll area) blocks -1. If bottom scroll
											or whole screen scroll mode is chosen, the number
											of specified blocks is set to $Z_7Z_6Z_5Z_4Z_3Z_2Z_1Z_0$
											Number of specified blocks = 00000000b (POR)
											d) Area Scroll Mode
											There are four types of area scroll.
											P ₄₁ P ₄₀ Types of Area Scroll
											0 0 Center Screen Scroll
											0 1 Top Screen Scroll
											1 0 Bottom Screen Scroll
											1 1 Whole Screen Scroll
											Type of area scroll = Whole Screen Scroll (POR)
0	AB	1	0	1	0	1	0	1		Set Scroll Start	X ₅ X ₄ X ₃ X ₂ X ₁ X ₀ specify the start row address
1		X_7	X_6	X_5	X_4	X_3	X_2	X_1	X_0		of area scrolling.
_		-	_	-	_	_		_	-		Start block address = 00000000b (POR)
0	20	0	0	1	0 X ₄	0 X.	0 X ₂	0 X ₁	0 X.	Set Power Control Register	X ₀ =0: turns off the reference voltage generator (POR)
*					7.4	Λ3	24.2	1	240		X ₀ =1: turns on the reference voltage generator
											X ₁ =0: turns off the internal regulator and voltage
											follower (POR)
											X ₁ =1: turns on the internal regulator and voltage
											follower
											Select booster level
											X ₄ X ₃ X ₂ Boost level
											0 0 0 4X
											0 0 1 5X
											0 1 0 6X (POR)
											0 1 1 7X

D/C	т	D#	D/	D.F.	D.	D2	D4	D1	DA	C1	D				
D/C 0	Hex 81	D7	D6 0	υ ວ	D4 0	В	D2 0	0 0	_	Command Set Contrast Level	Description				
"	81	*	*		_		-	_		& Internal	a) Select contrast level from 64 contrast steps Contrast increases as X ₅ X ₄ X ₃ X ₂ X ₁ X ₀ is increased				
1				X ₅	X ₄	X ₃	X ₂		A ₀		from 000000b to 111111b. $X_5X_4X_3X_2X_1X_0 =$				
1		*	*	*	*	*	Y_2	Y_1	Y ₀	Ratio	1000000b (POR)				
										Katio	1000000 (FOR)				
											b) The internal regulator gain (1+R2/R1) V _{OUT}				
											increases as Y ₂ Y ₁ Y ₀ is increased from 000b to 111b.				
											The factor, 1+R2/R1, is given by:				
											Y ₂ Y ₁ Y ₀ = 000: 3.38 (POR)				
											Y ₂ Y ₁ Y ₀ = 001: 4.41				
											$Y_2Y_1Y_0 = 010: 5.44$				
											$Y_2Y_1Y_0 = 011: 6.47$				
											$Y_2Y_1Y_0 = 100: 7.50$				
											$Y_2Y_1Y_0 = 101: 8.52$				
											$Y_2Y_1Y_0 = 110: 9.55$				
											$Y_2Y_1Y_0 = 111: 10.58$				
0	A8	1	0	1	0	1	0	0	0	Enter partial	$X_7X_6X_5X_4X_3X_2X_1X_0$: End COM Address =				
1		0	0	0	0	0	0	0		Display	00000000b (POR)				
1		X ₇	X ₆	X ₅	X_4	X3	X_2	X_1	X ₀	1.7	00000000b (POR)				
1		Λ7	Λ6	Λ5	Λ4	Аз	Λ2	Λl	Λ0						
0	A9	1	0	1	0	1	0	0	1	Exit partial Display	Exit the "partial display mode" by executing the				
											Exit the "partial display mode" by executing the command 10101001b (POR)				
0	AE-	1	0	1	0	1	1	1	X ₀	Set Display On/Off	f X ₀ =0: turns off LCD panel (POR)				
	AF										X ₀ =0: turns on LCD panel				
0	94 -	1	0	0	1	0	1	0	X0	Enter/Exit sleep	X ₀ =1: turns on LCD panel X0=0: exit the sleep mode.				
	95									mode	X0=0: exit the sleep mode. X0=1: enter sleep mode. (POR)				
0	D1 -	1	1	0	1	0	0	X_1	Xa	Enable/disable	X ₁ X ₀ Internal oscillator status				
	D2	-									0 1 ON				
											1 0 OFF (POR)				
0	82	1	0	0	0	0	0	1	0	Set temperature	VOUT average temperature gradients				
1		*	*	*	*	*	*	X_1	X ₀	compensation	X ₁ X ₀ Average Temperature				
									0	coefficient	Gradient [%/oC]				
											0 0 -0.01 (POR)				
											0 1 -0.06				
0	25	0	0	1	0	0	1	0	1	NOP	Command result in No Operation				
											The command should be issued after the execution				
											of the Status Read command				
0	5C	0	1	0	1	1	1	0	0	Write display data					
1		Y ₇₁	Y ₆₁	Y51	Y41	Y_{31}	Y21	Y_{11}	Y_{01}		the command 01011100b. The following byte is				
											used to specify the data byte to be written to the				
											GDDRAM directly.				
											The D/C bit should be stated at logic "1" during the				
									1		display data is written to the GDDRAM.				

D/C	Hex	D7	D6	D5	D4	D3	D2	D1	$\mathbf{D0}$	Command	Description
0	FB	1	1	1	1	1	0	1	1	Set biasing ratio	Allow user to set bias from 1/4 to 1/13
0/1		Lo	0	0	0	\mathbf{B}_3			$\mathbf{B_0}$		B ₃ B ₂ B ₁ B ₀ Bias ratio
0/1		20			· ·	13	102	Di	20	lock/unlock	1 0 0 1 1/4 bias
											1 0 0 0 1/5 bias
											0 1 1 1 1/6 bias
											0 1 1 0 1/7 bias
											0 1 0 1 1/8 bias
											0 1 0 0 1/9 bias
											0 0 1 1 1/10 bias
											0 0 1 0 1/10 bias
											0 0 0 1 1/11 bias
											0 0 0 0 1 1/12 blas 0 0 0 0 1/13 bias (POR)
											Lock and unlock Cmd 0 unlock (POR)
											1 lock and no more cmd/data is written to driver
											The 2 nd byte is sent as Cmd if L ₀ is set to 1
0	F2	1	1	1	1	0	0	1	0	Set Frame	This command uses to change the frame
	r2			1		_			_	frequency and N-	frequency; set the N-line inversion and N-line
1		0	1	F_4	F ₃	F_2	$\mathbf{F_1}$	F_0	U	line Inversion	inversion mode
1		X_0	N_6	N_5	N_4	N_3	N_2	N_1	N_0	inic mversion	anversion mode
											$X_0 = 1 \text{ (POR)}$ $X_0 = 0$
											F ₄ F ₃ F ₂ F ₁ F ₀
											00000 : 56.4 Hz (POR) 64Hz
											00111:+10.1% +11.8%
											01000 : +10.7% +15.2%
											01001 : +12.5% +15.2%
											01010:+14.1% +20.6%
											01011:+16.1% +20.6%
											01100:+17.4% +25.9%
											01101:+19.5% +25.9%
											01110:+21.4% +32.9%
											01111:+23.7% +32.9%
											10000 : +24.6% +37.4%
											10001:+27.1% +37.4%
											10010: +29.2% +46.0%
											10011:+31.8% +46.0%
											10100:+33.6% +54.6%
											10101:+36.5% +54.6%
											10110:+39.0% +66.9%
											10111: +42.2% +66.9%
											11000 : +43.2% +75.8%
											11001:+46.6% +75.8%
											11010: +49.7% +94.0%
											Remark: The frame frequency is typical value
											for 130mux and PWM mode.
											The second byte data N ₅ N ₄ N ₃ N ₂ N ₁ N ₀ sets the n-
											line inversion register from 2 to 64 lines to
											reduce display crosstalk. Register values from
											000001b to 111111b are mapped to 2 lines to 64
											lines respectively. Value 00000b disables the N-
											line inversion. 010000 is the POR value. To
											avoid a fix polarity at some lines, it should be
											noted that the total number of mux should NOT
											be a multiple of the lines of inversion (n).
											N_6
											0 - reset n-line counter per frame (POR)
											1 - will not reset n-line counter per frame

1	D/C	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
the first time and the second time OTP 1	-						-			_		•
1		10	_			_		_		-	Dual Off Setting	
X4x3x2x1x0					ı		_					and more time time of the
	1		0	0	0	0	0	1	1	0		V V V V V (F1-t-/P)
00001 : original contrast (+ 1 fine steps/-3 fine steps) 00010 : original contrast (+ 2 fine steps/-3 fine steps) 00010 : original contrast (+ 3 fine steps/-4 fine steps) 00100 : original contrast (+ 3 fine steps/-4 fine steps) 00100 : original contrast (+ 5 fine steps/-5 fine steps) 00101 : original contrast (+ 5 fine steps/-6 fine steps) 00101 : original contrast (+ 5 fine steps/-8 fine steps) 00101 : original contrast (+ 6 fine steps/-8 fine steps) 00101 : original contrast (+ 7 fine steps/-8 fine steps) 01000 : original contrast (+ 10 fine steps/-10 fine steps) 01000 : original contrast (+ 10 fine steps/-12 fine steps) 01010 : original contrast (+ 10 fine steps/-12 fine steps) 01011 : original contrast (+ 10 fine steps/-12 fine steps) 01011 : original contrast (+ 11 fine steps/-13 fine steps) 01101 : original contrast (+ 14 fine steps/-14 fine steps/-10000 : original contrast (+ 15 fine steps/-14 fine steps/-10000 : original contrast (+ 15 fine steps/-14 fine steps/-100000 : original contrast (+ 15 fine steps/-14 fine steps/-100000 : original contrast (+ 12 fine steps/-13 fine steps) 01001 : original contrast (+ 13 fine steps/-14 fine steps/-100000 : original contrast (+ 12 fine steps/-14 fine steps/-100000 : original contrast (+ 12 fine steps/-14 fine steps/-1000000000000000000000000000000000000												
00011 : original contrast (+ 3 fine steps) 4 fine steps)												
00100 : original contrast (+ 4 fine steps) - 5 fine steps)												
00101: original contrast (+5 fine steps) -6 fine steps)												
00111: original contrast (+7 fine steps/-8 fine steps) 01000: original contrast (+7 fine steps/-9 fine steps) 01001: original contrast (+9 fine steps/-10 fine steps) 01001: original contrast (+10 fine steps/-10 fine steps) 01101: original contrast (+10 fine steps/-11 fine steps) 01101: original contrast (+12 fine steps/-13 fine steps) 01101: original contrast (+12 fine steps/-13 fine steps) 01110: original contrast (+14 fine steps/-14 fine steps) 01110: original contrast (+14 fine steps/-14 fine steps) 01100: original contrast (-15 fine steps/-14 fine steps) 10000: original contrast (-15 fine steps/-15 fine steps) 10001: original contrast (-15 fine steps/-14 fine steps) 10001: original contrast (-15 fine steps/-14 fine steps) 10010: original contrast (-15 fine steps/-16 fine steps/-												
01000 original contrast (+ 8 fine steps/-9 fine steps) 01001 original contrast (+ 10 fine steps/-11 fine steps) 0101 original contrast (+ 11 fine steps/-12 fine steps) 0101 original contrast (+ 11 fine steps/-12 fine steps) 0101 original contrast (+ 11 fine steps/-13 fine steps) 0101 original contrast (+ 12 fine steps/-14 fine steps) 0110 original contrast (+ 13 fine steps/-14 fine steps) 0110 original contrast (+ 14 fine steps/-16 fine steps) 01000 original contrast (+ 15 fine steps/-16 fine steps) 01000 original contrast (- 15 fine steps/-16 fine steps) 01000 original contrast (- 13 fine steps/-16 fine steps) 01010 original contrast (- 13 fine steps/-16 fine steps) 01010 original contrast (- 13 fine steps/-16 fine steps/-10010 original contrast (- 15 fine steps/-16 fine steps/-10010 original contrast (- 15 fine steps/-16 fine steps/-10010 original contrast (- 15 fine steps/-16 fine steps/-10100 original contrast (- 15 fine steps/-16 fine steps/-10100 original contrast (- 15 fine steps/-16 fine steps/-10100 original contrast (- 5 fine steps/-16 fine steps/-101000 original contrast (- 5 fine s												
01001 : original contrast (+9 fine steps/-10 fine steps) 01010 : original contrast (+10 fine steps/-11 fine steps) 01010 : original contrast (+11 fine steps/-13 fine steps) 01101 : original contrast (+11 fine steps/-13 fine steps) 01101 : original contrast (+11 fine steps/-13 fine steps) 01101 : original contrast (+14 fine steps/-15 fine steps) 01101 : original contrast (+15 fine steps/-15 fine steps) 01101 : original contrast (+15 fine steps/-15 fine steps) 01000 : original contrast (-15 fine steps/-15 fine steps) 0000 : original contrast (-15 fine steps/-15 fine steps) 0001 : original contrast (-14 fine steps/-14 fine steps) 01010 : original contrast (-15 fine steps/-14 fine steps) 01010 : original contrast (-15 fine steps/-12 fine steps) 01010 : original contrast (-15 fine steps/-12 fine steps) 01010 : original contrast (-16 fine steps/-17 fine steps) 01010 : original contrast (-16 fine steps/-17 fine steps) 01010 : original contrast (-16 fine steps/-17 fine steps) 01010 : original contrast (-16 fine steps/-17 fine steps) 01010 : original contrast (-2 fine steps/-17 fine steps) 01010 : original contrast (-2 fine steps/-17 fine steps) 01010 : original contrast (-3 fine steps/-17 fine steps) 01010 : original contrast (-5 fine steps/-17 fine steps) 01010 : original contrast (-5 fine steps/-17 fine steps) 01010 : original contrast (-5 fine steps/-17 fine steps) 01010 : original contrast (-5 fine steps/-17 fine steps) 01010 : original contrast (-5 fine steps/-17 fine steps) 01010 : original contrast (-5 fine steps/-17 fine steps) 01010 : original contrast (-5 fine steps/-17 fine steps) 01010 : original contrast (-5 fine steps/-17 fine steps) 01010 : original contrast (-5 fine steps/-17 fine steps) 01010 : original contrast (-5 fine steps/-17 fine steps) 01010 : original contrast (-5 fine steps/-17 fine steps) 01010 : original contrast (-5 fine steps/-17 fine steps) 01010 : original contrast (-5 fine steps/-17 fine steps) 01010 : original contr												
01010 : original contrast (+10 fine steps/-11 fine steps) 01011 : original contrast (+11 fine steps/-13 fine steps) 01101 : original contrast (+11 fine steps/-13 fine steps) 01100 : original contrast (+13 fine steps/-14 fine steps) 01101 : original contrast (+14 fine steps/-13 fine steps) 01101 : original contrast (+14 fine steps/-16 fine steps) 01101 : original contrast (+14 fine steps/-16 fine steps) 01000 : original contrast (-16 fine steps/-16 fine steps) 10000 : original contrast (-16 fine steps/-16 fine steps) 10010 : original contrast (-15 fine steps/-16 fine steps) 10010 : original contrast (-13 fine steps/-16 fine steps) 10100 : original contrast (-13 fine steps/-16 fine steps) 10100 : original contrast (-16 fine steps/-17 fine steps) 10100 : original contrast (-16 fine steps/-17 fine steps) 10110 : original contrast (-16 fine steps/-17 fine steps) 10110 : original contrast (-16 fine steps/-17 fine steps) 10110 : original contrast (-6 fine steps/-17 fine steps) 10110 : original contrast (-6 fine steps/-17 fine steps) 11000 : original contrast (-6 fine steps/-17 fine steps) 11000 : original contrast (-6 fine steps/-17 fine steps) 11000 : original contrast (-7 fine steps/-17 fine steps) 11000 : original contrast (-7 fine steps/-17 fine steps) 11000 : original contrast (-7 fine steps/-17 fine steps) 11000 : original contrast (-7 fine steps/-17 fine steps) 11000 : original contrast (-7 fine steps/-17 fine steps) 11000 : original contrast (-7 fine steps/-17 fine steps) 11000 : original contrast (-8 fine steps/-17 fine steps) 11000 : original contrast (-8 fine steps/-17 fine steps) 11000 : original contrast (-8 fine steps/-17 fine steps) 11000 : original contrast (-17 fine steps/-17 fine steps) 11000 : original contrast (-18 fine steps/-17 fine steps) 11000 : original contrast (-18 fine steps/-17 fine steps) 11000 : original contrast (-18 fine steps/-17 fine steps) 11000 : original contrast (-18 fine steps/-17 fine steps/-17 fine steps/-17 f												
01011 : original contrast (+11 fine steps/-12 fine steps) 01101 : original contrast (+12 fine steps/-13 fine steps) 01101 : original contrast (+12 fine steps/-14 fine steps) 01101 : original contrast (+13 fine steps/-14 fine steps) 01101 : original contrast (+14 fine steps/-15 fine steps) 01101 : original contrast (+15 fine steps/-15 fine steps) 10101 : original contrast (+15 fine steps/-15 fine steps) 10001 : original contrast (+15 fine steps/+15 fine steps) 10001 : original contrast (-15 fine steps/+15 fine steps) 10101 : original contrast (-15 fine steps/+16 fine steps) 10101 : original contrast (-16 fine steps/+16 fine steps) 10101 : original contrast (-16 fine steps/+16 fine steps) 10101 : original contrast (-16 fine steps/+16 fine steps) 10101 : original contrast (-16 fine steps/+9 fine steps) 10101 : original contrast (-16 fine steps/+9 fine steps) 10101 : original contrast (-6 fine steps/+6 fine steps) 11001 : original contrast (-7 fine steps/+6 fine steps) 11001 : original contrast (-6 fine steps/+6 fine steps) 11001 : original contrast (-6 fine steps/+6 fine steps) 11001 : original contrast (-6 fine steps/+6 fine steps) 11001 : original contrast (-7 fine steps/+6 fine steps) 11001 : original contrast (-7 fine steps/+6 fine steps) 11001 : original contrast (-7 fine steps/+6 fine steps) 11001 : original contrast (-7 fine steps/+6 fine steps) 11001 : original contrast (-7 fine steps/+6 fine steps) 11001 : original contrast (-7 fine steps/+6 fine steps) 11001 : original contrast (-7 fine steps/+6 fine steps) 11001 : original contrast (-7 fine steps/+6 fine steps) 11001 : original contrast (-7 fine steps/+6 fine steps) 11001 : original contrast (-7 fine steps/+6 fine steps) 11001 : original contrast (-7 fine steps/+6 fine steps) 11001 : original contrast (-7 fine steps/+6 fine steps) 11001 : original contrast (-7 fine steps/+7 fine steps) 11001 : original contrast (-7 fine steps/+7 fine steps) 11001 : original contrast (-7 fine steps/+7												
01100 : original contrast (+12 fine steps/-13 fine steps) 01101 : original contrast (+14 fine steps/-15 fine steps) 01101 : original contrast (+14 fine steps/-15 fine steps) 01101 : original contrast (+14 fine steps/-15 fine steps) 01101 : original contrast (+15 fine steps/-15 fine steps) 01000 : original contrast (+15 fine steps/-15 fine steps) 10000 : original contrast (-16 fine steps/+16 fine steps) 10001 : original contrast (-16 fine steps/+16 fine steps) 10001 : original contrast (-16 fine steps/+16 fine steps) 10010 : original contrast (-17 fine steps/+16 fine steps) 10101 : original contrast (-17 fine steps/+16 fine steps) 10101 : original contrast (-17 fine steps/+16 fine steps) 10101 : original contrast (-17 fine steps/+16 fine steps) 10101 : original contrast (-18 fine steps/+16 fine steps) 10101 : original contrast (-18 fine steps/+16 fine steps) 10101 : original contrast (-18 fine steps/+16 fine steps) 10101 : original contrast (-18 fine steps/+16 fine steps) 10101 : original contrast (-18 fine steps/+16 fine steps) 10101 : original contrast (-18 fine steps/+16 fine steps) 10101 : original contrast (-18 fine steps/+16 fine steps) 10101 : original contrast (-18 fine steps/+16 fine steps) 10101 : original contrast (-18 fine steps/+16 fine steps) 10101 : original contrast (-18 fine steps/+16 fine steps) 10101 : original contrast (-18 fine steps/+16 fine steps) 10101 : original contrast (-18 fine steps/+16 fine steps) 10101 : original contrast (-18 fine steps/+16 fin												
01101 : original contrast (+13 fine steps/-14 fine steps) 01101 : original contrast (+14 fine steps/-15 fine steps) 01101 : original contrast (+14 fine steps/-15 fine steps) 10001 : original contrast (+15 fine steps/-15 fine steps) 10001 : original contrast (-14 fine steps/-15 fine steps) 10001 : original contrast (-14 fine steps/-13 fine steps) 10101 : original contrast (-14 fine steps/-14 fine steps) 10101 : original contrast (-16 fine steps/-14 fine steps) 10101 : original contrast (-16 fine steps/-16 fin												
0												
10000 : original contrast (-16 fine steps/+15 fine steps) 10001 : original contrast (-14 fine steps/+13 fine steps) 10011 : original contrast (-14 fine steps/+13 fine steps) 10011 : original contrast (-14 fine steps/+12 fine steps) 10010 : original contrast (-15 fine steps/+12 fine steps) 10010 : original contrast (-16 fine steps/+16 fine steps) 10100 : original contrast (-16 fine steps/+16 fine steps) 10110 : original contrast (-9 fine steps/+16 fine steps) 10110 : original contrast (-9 fine steps/+6 fine steps) 10110 : original contrast (-9 fine steps/+7 fine steps) 11010 : original contrast (-6 fine steps/+5 fine steps) 11010 : original contrast (-6 fine steps/+5 fine steps) 11010 : original contrast (-6 fine steps/+5 fine steps) 11010 : original contrast (-6 fine steps/+5 fine steps) 11011 : original contrast (-7 fine steps/+6 fine steps) 11011 : original contrast (-7 fine steps/+6 fine steps) 11011 : original contrast (-7 fine steps/+6 fine steps) 11011 : original contrast (-7 fine steps/+7 fine steps) 11011 : original contrast (-7 fine steps/+7 fine steps) 11011 : original contrast (-7 fine steps/+7 fine steps) 11011 : original contrast (-7 fine steps/+7 fine steps) 11011 : original contrast (-7 fine steps/+7 fine steps) 11011 : original contrast (-7 fine steps/+7 fine steps) 11011 : original contrast (-7 fine steps/+7 fine steps) 11011 : original contrast (-7 fine steps/+7 fine steps) 11011 : original contrast (-7 fine steps/+7 fine steps) 11011 : original contrast (-7 fine steps/+7 fine steps) 11011 : original contrast (-7 fine steps/+7 fine steps) 11011 : original contrast (-7 fine steps/+7 fine steps) 11011 : original contrast (-7 fine steps/+7 fine steps) 11011 : original contrast (-7 fine steps/+7 fine steps) 11011 : original contrast (-7 fine steps/+7 fine steps) 11011 : original contrast (-7 fine steps/+7 fin												
10001 : original contrast (-1 15 fine steps/+1 4 fine steps) 10010 : original contrast (-1 14 fine steps/+1 2 fine steps) 10010 : original contrast (-1 14 fine steps/+1 2 fine steps) 10101 : original contrast (-1 12 fine steps/+1 16 fine steps) 10101 : original contrast (-1 16 fine steps/+1 16 fine steps) 10101 : original contrast (-1 16 fine steps/+1 16 fine steps) 10101 : original contrast (-9 fine steps/+1 6 fine steps) 10100 : original contrast (-9 fine steps/+ 7 fine steps) 11000 : original contrast (-5 fine steps/+ 7 fine steps) 11001 : original contrast (-6 fine steps/+ 7 fine steps) 11001 : original contrast (-6 fine steps/+ 7 fine steps) 11001 : original contrast (-6 fine steps/+ 2 fine steps) 11101 : original contrast (-6 fine steps/+ 2 fine steps) 11101 : original contrast (-7 fine steps/+ 2 fine steps) 11101 : or												
10010 : original contrast (-1 4 fine steps/+13 fine steps) 10011 : original contrast (-1.3 fine steps/+12 fine steps) 10101 : original contrast (-1.13 fine steps/+12 fine steps) 10101 : original contrast (-1.14 fine steps/+10 fine steps) 10110 : original contrast (-1.15 fine steps/+10 fine steps) 10111 : original contrast (-9 fine steps/+9 fine steps) 10111 : original contrast (-9 fine steps/+9 fine steps) 11000 : original contrast (-7 fine steps/+9 fine steps) 11000 : original contrast (-7 fine steps/+7 fine steps) 11001 : original contrast (-7 fine steps/+7 fine steps) 11001 : original contrast (-7 fine steps/+7 fine steps) 11101 : original contrast (-4 fine steps/+3 fine steps) 11100 : original contrast (-4 fine steps/+3 fine steps) 11100 : original contrast (-4 fine steps/+3 fine steps) 11100 : original contrast (-4 fine steps/+3 fine steps) 11100 : original contrast (-4 fine steps/+3 fine steps) 11100 : original contrast (-4 fine steps/+1 fine steps) 11100 : original contrast (-5 fine steps/+1 fine steps) 11100 : original contrast (-5 fine steps/+5 fine steps) 11100 : original contrast (-5 fine steps/+5 fine steps) 11100 : original contrast (-7 fine steps/+5 fine steps) 11100 : original contrast (-7 fine steps/+5 fine steps) 11100 : original contrast (-7 fine steps/+5 fine steps) 11100 : original contrast (-7 fine steps/+5 fine steps) 11100 : original contrast (-7 fine steps/+6 fine steps) 11100 : original contrast (-7 fine steps/+6 fine steps) 11100 : original contrast (-7 fine steps/+6 fine steps) 11100 : original contrast (-7 fine steps/+1 fine steps) 11100 : original contrast (-7 fine steps/+1 fine steps) 11100 : original contrast (-7 fine steps/+1 fine steps) 11100 : original contrast (-7 fine steps/+1 fine steps) 11100 : original contrast (-7 fine steps/+1 fine steps) 11100 : original contrast (-7 fine steps/+1 fine steps) 11100 : original contrast (-7 fine steps/+1 fine steps) 11100 : original contrast (-7 fine steps/+1 fine steps												
10011 : original contrast (- 13 fine steps/+12 fine steps) 10100 : original contrast (- 12 fine steps/+11 fine steps) 10101 : original contrast (- 11 fine steps/+11 fine steps) 10110 : original contrast (- 10 fine steps/+9 fine steps) 10110 : original contrast (- 10 fine steps/+9 fine steps) 10110 : original contrast (- 8 fine steps/+9 fine steps) 11000 : original contrast (- 8 fine steps/+9 fine steps) 11001 : original contrast (- 6 fine steps/+5 fine steps) 11001 : original contrast (- 6 fine steps/+5 fine steps) 11001 : original contrast (- 6 fine steps/+5 fine steps) 11001 : original contrast (- 6 fine steps/+5 fine steps) 11101 : original contrast (- 6 fine steps/+5 fine steps) 11101 : original contrast (- 6 fine steps/+5 fine steps) 11101 : original contrast (- 6 fine steps/+5 fine steps) 11101 : original contrast (- 6 fine steps/+5 fine steps) 11101 : original contrast (- 6 fine steps/+5 fine steps) 11101 : original contrast (- 6 fine steps/+5 fine steps) 11101 : original contrast (- 6 fine steps/+5 fine steps) 11101 : original contrast (- 6 fine steps/+5 fine steps) 11101 : original contrast (- 6 fine steps/+5 fine steps) 11001 : original contrast (- 6 fine steps/+5 fine steps) 11001 : original contrast (- 7 fine steps/+5 fine steps) 11001 : original contrast (- 7 fine steps/+5 fine steps) 11001 : original contrast (- 7 fine steps/+5 fine steps) 11001 : original contrast (- 7 fine steps/+5 fine steps) 11001 : original contrast (- 7 fine steps/+5 fine steps) 11001 : original contrast (- 7 fine steps/+5 fine steps) 11001 : original contrast (- 7 fine steps/+5 fine s												
10100 : original contrast (- 12 fine steps/+11 fine steps) 10101 : original contrast (- 11 fine steps/+10 fine steps) 10101 : original contrast (- 10 fine steps/+9 fine steps) 10101 : original contrast (- 10 fine steps/+9 fine steps) 10101 : original contrast (- 8 fine steps/+ 8 fine steps) 11000 : original contrast (- 6 fine steps/+ 6 fine steps) 11001 : original contrast (- 6 fine steps/+ 6 fine steps) 11010 : original contrast (- 6 fine steps/+ 6 fine steps) 11010 : original contrast (- 4 fine steps/+ 6 fine steps) 11010 : original contrast (- 4 fine steps/+ 2 fine steps) 11101 : original contrast (- 4 fine steps/+ 2 fine steps) 11101 : original contrast (- 2 fine steps/+ 2 fine steps) 11101 : original contrast (- 1 fine step/+ 0 fine steps) 11101 : original contrast (- 1 fine step/+ 0 fine steps) 11101 : original contrast (- 1 fine step/+ 0 fine steps) 11101 : original contrast (- 1 fine step/+ 0 fine steps) 11101 : original contrast (- 2 fine steps/+ 0 fine steps) 11101 : original contrast (- 2 fine steps/+ 0 fine steps) 11101 : original contrast (- 3 fine steps/+ 0 fine steps) 11101 : original contrast (- 3 fine steps/+ 0 fine steps) 11101 : original contrast (- 5 fine steps/+ 0 fine steps) 11101 : original contrast (- 5 fine steps/+ 0 fine steps) 11101 : original contrast (- 5 fine steps/+ 0 fine steps) 11101 : original contrast (- 5 fine steps/+ 0 fine												
10110 : original contrast (- 10 fine steps/+ 9 fine steps) 10111 : original contrast (- 7 fine steps/+ 7 fine steps) 11000 : original contrast (- 8 fine steps/+ 7 fine steps) 11001 : original contrast (- 8 fine steps/+ 7 fine steps) 11001 : original contrast (- 6 fine steps/+ 5 fine steps) 11011 : original contrast (- 6 fine steps/+ 3 fine steps) 11011 : original contrast (- 5 fine steps/+ 3 fine steps) 11100 : original contrast (- 5 fine steps/+ 3 fine steps) 11101 : original contrast (- 5 fine steps/+ 3 fine steps) 11101 : original contrast (- 6 fine steps/+ 3 fine steps) 11101 : original contrast (- 6 fine steps/+ 3 fine steps) 11101 : original contrast (- 6 fine steps/+ 7 fine steps) 11101 : original contrast (- 6 fine steps/+ 7 fine steps) 11101 : original contrast (- 6 fine steps/+ 7 fine steps) 11101 : original contrast (- 6 fine steps/+ 7 fine steps) 11101 : original contrast (- 8 fine steps/+ 7 fine steps) 11101 : original contrast (- 8 fine steps/+ 7 fine steps) 11101 : original contrast (- 8 fine steps/+ 7 fine steps) 11011 : original contrast (- 8 fine steps/+ 7 fine steps) 11011 : original contrast (- 8 fine steps/+ 7 fine steps) 11011 : original contrast (- 8 fine steps/+ 7 fine steps) 11011 : original contrast (- 8 fine steps/+ 7 fine steps) 11011 : original contrast (- 8 fine steps/+ 7 fine steps) 11011 : original contrast (- 8 fine steps/+ 7 fine steps) 11011 : original contrast (- 8 fine steps/+ 7 fine steps) 11011 : original contrast (- 8 fine steps/+ 8 fine steps) 11011 : original contrast (- 8 fine steps/+ 8 fine steps) 11011 : original contrast (- 8 fine steps/+ 8 fine steps) 11011 : original contrast (- 8 fine steps/+ 8 fine steps) 11011 : original contrast (- 8 fine steps/+ 8 fine steps) 11011 : original contrast (- 8 fine steps/+8 fine steps) 11011 : original contrast (- 8 fine steps/+8 fine steps 11011 : original contrast (- 8 fine steps/+8 fine steps 11011 : original contrast (- 8 fine steps/* 8 fine steps 11001 : o												
10111 : original contrast (- 9 fine steps/+ 8 fine steps) 11000 : original contrast (- 8 fine steps/+ 7 fine steps) 11001 : original contrast (- 7 fine steps/+ 6 fine steps) 11010 : original contrast (- 7 fine steps/+ 6 fine steps) 11010 : original contrast (- 6 fine steps/+ 5 fine steps) 11010 : original contrast (- 6 fine steps/+ 3 fine steps) 11101 : original contrast (- 1 fine steps/+ 3 fine steps) 11101 : original contrast (- 1 fine steps/+ 2 fine steps) 11101 : original contrast (- 1 fine steps/+ 2 fine steps) 11101 : original contrast (- 1 fine steps/+ 2 fine steps) 11101 : original contrast (- 1 fine steps/+ 2 fine steps) 11101 : original contrast (- 1 fine steps/+ 1 fine step) 11111 : original contrast (- 1 fine steps/+ 2 fine steps) 11101 : original contrast (- 1 fine steps/+ 2 fine steps) 11101 : original contrast (- 1 fine steps/+ 2 fine steps) 11101 : original contrast (- 1 fine steps/+ 2 fine steps) 11101 : original contrast (- 1 fine steps/+ 2 fine steps) 11101 : original contrast (- 3 fine steps/+ 2 fine steps) 11101 : original contrast (- 3 fine steps/+ 2 fine steps) 11101 : original contrast (- 3 fine steps/+ 3 fine												
11000 : original contrast (- 8 fine steps/+ 7 fine steps) 11001 : original contrast (- 7 fine steps/+ 6 fine steps) 11010 : original contrast (- 6 fine steps/+ 6 fine steps) 11011 : original contrast (- 5 fine steps/+ 5 fine steps) 11011 : original contrast (- 5 fine steps/+ 3 fine steps) 11100 : original contrast (- 3 fine steps/+ 3 fine steps) 11101 : original contrast (- 3 fine steps/+ 3 fine steps) 11101 : original contrast (- 2 fine steps/+ 3 fine steps) 11101 : original contrast (- 2 fine steps/+ 1 fine step) 11111 : original contrast (- 2 fine steps/+ 1 fine step) 11111 : original contrast (- 2 fine steps/+ 1 fine step) 11111 : original contrast (- 2 fine steps/+ 1 fine step) 11111 : original contrast (- 2 fine steps/+ 1 fine step) 11111 : original contrast (- 2 fine steps/+ 1 fine step) 11111 : original contrast (- 2 fine steps/+ 1 fine step) 11101 : original contrast (- 2 fine steps/+ 2 fine steps) 11001 : original contrast (- 3 fine steps/+ 2 fine steps) 11001 : original contrast (- 4 fine steps/+ 2 fine steps) 11001 : original contrast (- 4 fine steps/+ 2 fine steps) 11101 : original contrast (- 4 fine steps/+ 2 fine steps) 11101 : original contrast (- 4 fine steps/+ 2 fine steps) 11101 : original contrast (- 4 fine steps/+ 2 fine steps) 11001 : original contrast (- 4 fine steps/+ 2 fine steps) 11001 : original contrast (- 4 fine steps/+ 2 fine steps) 11001 : original contrast (- 4 fine steps/+ 2 fine steps) 11001 : original contrast (- 4 fine steps/+ 2 fine steps) 11001 : original contrast (- 4 fine steps/+ 2 fine steps) 11001 : original contrast (- 4 fine steps/+ 2 fine steps) 11001 : original contrast (- 4 fine steps/+ 2 fine steps) 11001 : original contrast (- 4 fine steps/+ 2 fine steps) 11001 : original contrast (- 1 fine steps/+ 2 fine steps												
11001 : original contrast (-7 fine steps/+ 6 fine steps) 11010 : original contrast (-6 fine steps/+5 fine steps) 11011 : original contrast (-6 fine steps/+5 fine steps) 11011 : original contrast (-5 fine steps/+4 fine steps) 11100 : original contrast (-4 fine steps/+4 fine steps) 11100 : original contrast (-4 fine steps/+2 fine steps) 11101 : original contrast (-3 fine steps/+2 fine steps) 11111 : original contrast (-2 fine steps/+1 fine step) 11111 : original contrast (-1 fine step/+0 fine step) 11111 : original contrast (-1 fine step/+0 fine step) 11111 : original contrast (-1 fine steps/+1 fine step) 11111 : original contrast (-1 fine steps/+1 fine step) 11111 : original contrast (-3 fine steps/+1 fine step) 11111 : original contrast (-1 fine steps/+0 fine steps) 1100 : original contrast (-1 fine steps/+0 fine steps) 1100 : original contrast (-7 fine steps/+0 fine steps) 1100 : original contrast (-7 fine steps/+0 fine steps) 1100 : original contrast (-7 fine steps/+0 fine steps/+0 fine steps) 1100 : original contrast (-7 fine steps/+0 fine steps/+0 fine steps) 1100 : original contrast (-7 fine steps/+0 fine steps) 1100 : original contrast (-7 fine steps/+0 fine steps/+0 fine steps) 1100 : original contrast (-7 fine steps/+0 fine steps) 1100 : original contrast (-7 fine steps/+0 fine steps/+0 fine steps) 1100 : original contrast (-7 fine steps/+0 fine steps) 1100 : original contrast (-7 fine steps/+0 fine steps) 1100 : original contrast (-7 fine steps/+0 fine steps/+0 fine steps) 1100 : original contrast (-7 fine steps/+0 fine steps) 1100 : original contrast (-7 fine steps/+0 fine steps/+0 fine steps) 1100 : original contrast (-7 fine steps/+0 fine steps) 1100 : original contrast (-7 fine steps/+0 fine steps/+0 fine steps) 1100 : original contrast (-7 fine steps/+0 fine steps) 1100 : original contrast (-7 fine steps/+0 fin												
11010 : original contrast (- 6 fine steps/+ 5 fine steps) 11011 : original contrast (- 5 fine steps/+ 4 fine steps) 11011 : original contrast (- 4 fine steps/+ 4 fine steps) 11101 : original contrast (- 4 fine steps/+ 2 fine steps) 11101 : original contrast (- 2 fine steps/+ 2 fine steps) 11101 : original contrast (- 2 fine steps/+ 1 fine step) 11111 : original contrast (- 2 fine steps/+ 1 fine step) 11111 : original contrast (- 2 fine steps/+ 1 fine step) 11111 : original contrast (- 2 fine steps/+ 1 fine step) 11111 : original contrast (- 2 fine steps/+ 1 fine step) 11111 : original contrast (- 2 fine steps/+ 1 fine step) 11111 : original contrast (- 2 fine steps/+ 0 fine step) 11111 : original contrast (- 2 fine steps/+ 0 fine step) 11111 : original contrast (- 2 fine steps/+ 0 fine steps) 1101 : original contrast (- 2 fine steps/+ 0 fine steps) 1101 : original contrast (- 2 fine steps/+ 0 fine steps) 1101 : original contrast (- 2 fine steps/+ 0												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												V ₁ = 1: 2 nd Level OTP
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
Remarks: 2^{nd} level OTP cannot be executed before 1^{st} level OTP. $Y_2Y_1 = 00, X_3X_2X_1X_0 = 0000: \text{ Disable OTP function}}$ * Note: 1 contrast step = 2 fine steps $V_2Y_1 = 00, X_3X_2X_1X_0 = 0000: \text{ Disable OTP function}}$ * Note: 1 contrast to program LCD driver with OTP offset value. This command can be executed twice only. Detail of OTP programming procedure on page 36 $V_2Y_1 = 00, X_3X_2X_1X_0 = 0000: \text{ Disable OTP function}}$ * Note: 1 contrast step = 2 fine steps $V_2Y_1 = 00, X_3X_2X_1X_0 = 0000: \text{ Disable OTP function}}$ * Note: 1 contrast step = 2 fine steps $V_2Y_1 = 00, X_3X_2X_1X_0 = 0000: \text{ Disable OTP function}}$ * Set 1st Com-line command. Byte A specifies the number of scroll lines. A ₇ A ₆ A ₅ A ₄ A ₃ A ₂ A ₁ A ₀ = 0000000000 (POR)												Y ₂ = 1: Enable OTP (POR)
before 1st level OTP. $Y_2Y_1 = 00, X_3X_2X_1X_0 = 0000$: Disable OTP function * Note: 1 contrast step = 2 fine steps $V_2Y_1 = 00, X_3X_2X_1X_0 = 0000$: Disable OTP function * Note: 1 contrast step = 2 fine steps $V_2Y_1 = 00, X_3X_2X_1X_0 = 0000$: Disable OTP function * Note: 1 contrast step = 2 fine steps $V_2Y_1 = 00, X_3X_2X_1X_0 = 0000$: Disable OTP function * Note: 1 contrast step = 2 fine steps $V_2Y_1 = 00, X_3X_2X_1X_0 = 0000$: Disable OTP function * Note: 1 contrast step = 2 fine steps $V_2Y_1 = 00, X_3X_2X_1X_0 = 0000$: Disable OTP function * Note: 1 contrast step = 2 fine steps $V_2Y_1 = 00, X_3X_2X_1X_0 = 0000$: Disable OTP function * Note: 1 contrast step = 2 fine steps $V_2Y_1 = 00, X_3X_2X_1X_0 = 0000$: Disable OTP function * Note: 1 contrast step = 2 fine steps $V_2Y_1 = 00, X_3X_2X_1X_0 = 0000$: Disable OTP function * Note: 1 contrast step = 2 fine steps $V_2Y_1 = 00, X_3X_2X_1X_0 = 0000$: Disable OTP function * Note: 1 contrast step = 2 fine steps $V_2Y_1 = 00, X_3X_2X_1X_0 = 0000$: Disable OTP function * Note: 1 contrast step = 2 fine steps $V_2Y_1 = 00, X_3X_2X_1X_0 = 0000$: Disable OTP function * Note: 1 contrast step = 2 fine steps $V_2Y_1 = 00, X_3X_2X_1X_0 = 0000$: Disable OTP function * Note: 1 contrast step = 2 fine steps $V_2Y_1 = 00, X_3X_2X_1X_0 = 0000$: Disable OTP function * Note: 1 contrast step = 2 fine steps $V_2Y_1 = 00, X_3X_2X_1X_0 = 0000$: Disable OTP function * Note: 1 contrast step = 2 fine steps $V_2Y_1 = 00, X_3X_2X_1X_0 = 0000$: Disable OTP function * Note: 1 contrast step = 2 fine steps $V_2Y_1 = 00, X_3X_2X_1X_0 = 0000$: Disable OTP function * Note: 1 contrast step = 2 fine steps $V_2Y_1 = 00, X_3X_2X_1X_0 = 0000$: Disable OTP function * Note: 1 contrast step = 2 fine steps $V_2Y_1 = 00, X_3X_2X_1X_0 = 0000$: Disable OTP function * Note: 1 contrast step = 2 fine steps $V_2Y_1 = 00, X_2Y_1 = 00$ $V_2Y_1 = 00, X_2Y_1 = 0$ $V_2Y_1 = 00, X_2Y_1 $												Remarks: 2 nd level OTP cannot be executed
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												$Y_2Y_1 = 00$, $X_3X_2X_1X_0 = 0000$: Disable OTP
F8 1 1 1 1 1 0 0 0 OTP programming This command starts to program LCD driver with OTP offset value. This command can be executed twice only. Detail of OTP programming procedure on page 36 O 44 0 1 0 0 0 1 0 0 Set 1 st Com Line Set 1 st Com-line command. Byte A specifies the number of scroll lines. $A_7A_6A_5A_4A_3A_2A_1A_0 = 0000000000$ (POR)												function
F8 1 1 1 1 1 0 0 0 OTP programming This command starts to program LCD driver with OTP offset value. This command can be executed twice only. Detail of OTP programming procedure on page 36 O 44 0 1 0 0 0 1 0 0 Set 1 st Com Line Set 1 st Com-line command. Byte A specifies the number of scroll lines. $A_7A_6A_5A_4A_3A_2A_1A_0 = 0000000000$ (POR)												
twice only. Detail of OTP programming procedure on page 36 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	F8	1	1	1	1	1	0	0	0	OTP programming	This command starts to program LCD driver with
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												procedure on page 36
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
1 A_7 A_6 A_5 A_4 A_3 A_2 A_1 A_0 number of scroll lines. $A_7A_6A_5A_4A_3A_2A_1A_0 = 0000000000$ (POR)	0	44	0	1	0	0	0	1	0	0	Set 1st Com Line	
			Α-	Α.	Δ.	Α.	Α.		Δ.	Α.		
Byte A is ranging from 0 to 129			247	7.16	715	2 14	713	212	741	7.10		, ,
												Byte A is ranging from 0 to 129

D/C	Hex	D7	D6	D5	D4	D3	D2	D1	$\mathbf{D0}$	Command	Description
0	F7	1	1	1	1	0	1	1	1	Grayscale or mono	$Y_0 = 0$: Grayscale mode (POR)
1		0	0	0	0	0	0	0	0	mode selection	$Y_0 = 1$: Mono mode
1		0	0	0	0	1	1	1	0		
1		0	Y_0	0	0	0	0	0	1		

D/C	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	5D	0	1	0	1	1	1	0		Read display data	Enter the "read display data mode" by executing
1		Y 71	Y ₆₁	Y ₅₁	Y_{41}	Y ₃₁	Y_{21}	Y_{11}	Y_{01}		the command 01011101b. The next byte is a
		,,,		-							dummy data. The GDDRAM data will be read
											form the second byte. The GDDRAM column
1 1											address pointer will be increased by one
											automatically after each 2-bytes data read.
0	F3	1	1	1	1	0	0	1		Bias current,	This command selects the bias current for VL5,
1		1	A_6	A ₅	A_4	0	A_2	A_1	A_0	booster frequency	VL4, VL3 and VL2, the booster frequency and
1	15	0	0	0	1	0	1	0		& OTP status read	the 1 st and 2 nd OTP status read.
1	00	0	0	0	0	0	0	0	0	selection	A ₂ A ₁ A ₀ : bias current for VL3 and VL2
1		1	0	0	Y_2	\mathbf{Y}_{1}	Y_0	\mathbf{X}_{1}	X_0		A ₆ A ₅ A ₄ : bias current for VL5 and VL4
											000: 1.0 x I _{ref}
											001: 3.5 x I _{ref}
											010 : 6.0 x I _{ref} (POR)
											011: 8.5 x I _{ref}
											100: 11.0 x I _{ref}
											101 : 13.5 x I _{ref}
											110: 17.0 x I _{ref}
											111 : 18.5 x I _{ref}
											X_1X_0
											00 : Fosc/2 (POR)
											01 : Fosc/4
											10 : Fosc/8
											11 : Fosc/16
											$Y_2Y_1Y_0 = 000$: Read 1 st Level OTP (POR)
											$Y_2Y_1Y_0 = 111$: Read 2 nd Level OTP
											2-1-0
											where I _{ref} is a constant
0	F9	1	1	1	1	1	0	0		Read back dual	$A_4 A_3 A_2 A_1 A_0 = OTP \text{ value}$
0		*	*	*	A_4	A_3	A_2	A_1	A_0	OTP value, SSL	
										module identity &	
\Box										OTP register status	

4.6 Basic Operating Sequence

```
void intial(void)
{
    Comwrite(0xd1); //Internal oscillator ON
   Comwrite(0x94); //exit the sleep mode
    delay(10);
   Comwrite(0xf2);
   Datwrite(0x00);
   Datwrite(0x00);
   Comwrite(0xf7);
   Datwrite(0x00);
   Datwrite(0x0e);
   Datwrite(0x01);
   Comwrite(0xBC);
   Datwrite(0x02);
   Datwrite(0x00);
   Datwrite(0x00);
   Comwrite(0x15); //Set Column 0~32
   Datwrite(0); //start column address
   Datwrite(24); //end column address
   Comwrite(0x75); //Set Page 0~129
   Datwrite(0x00); //start page address
   Datwrite(0x5F); //end page address
   Comwrite(0x44); //Set 1st Com Line
   Datwrite(0x11);
   Comwrite(0xBB);
   Datwrite(0x01);
   Comwrite(0xCA); //Driver duty selection
   Datwrite(0x00);
   Datwrite(0x17);
   Datwrite(0x00);
```

Comwrite(0x20); //Set Power Control Register

Datwrite(0x07); delay(150);

Comwrite(0x81); //Set Contrast Level & Internal Regulator Resistor Ratio

Datwrite(0x2C); //X5--X0 Datwrite(0x05); //Y2--Y0

Comwrite(0x82); Datwrite(0x01);

Comwrite(0xFB); //set bias Datwrite(0x02); //1/11 bias

Comwrite(0xF3); //Bias current,

Datwrite(0xA2); Datwrite(0x15); Datwrite(0x00); Datwrite(0x81);

Comwrite(0xF2); //SET Frame frequency

Datwrite(0x40); Datwrite(0x04); //Datwrite(0x10); //Datwrite(0x01);

Comwrite(0xAF); //display on

}

5. Inspection Standards

Item	Criterion for defects	Defect type
1) Display on inspection	(1) Non display (2) Vertical line is deficient (3) Horizontal line is deficient (4) Cross line is deficient	Major
2) Black / White spot	Size Φ (mm) Acceptable number $\Phi \leqslant 0.3$ Ignore (note) $0.3 < \Phi \leqslant 0.45$ 3 $0.45 < \Phi \leqslant 0.6$ 1 $0.6 < \Phi$ 0	Minor
3) Black / White line	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Minor
4) Display pattern		Minor
5) Spot-like contrast irregularity	Size Φ (mm) Acceptable Number Ignore (note) $0.7 < \Phi \le 1.0$ 3 $1.0 < \Phi \le 1.5$ 1 $1.5 < \Phi$ 0 Note: 1) Conformed to limit samples. 2) Intervals of defects are more than 30mm.	Minor
6) Bubbles in polarizer	Size Φ (mm) Acceptable Number $\Phi \leqslant 0.4$ Ignore (note) $0.4 < \Phi \leqslant 0.65$ 2 $0.65 < \Phi \leqslant 1.2$ 1 $1.2 < \Phi$ 0	Minor
7) Scratches and dent on the polarizer	Scratches and dent on the polarizer shall be in the accordance with "2) Black/white spot", and "3) Black/White line".	Minor
8) Stains on the surface of LCD panel	Stains which cannot be removed even when wiped lightly with a soft cloth or similar cleaning.	Minor
9) Rainbow color	No rainbow color is allowed in the optimum contrast on state within the active area.	Minor
10) Viewing area encroachment	Polarizer edge or line is visible in the opening viewing area due to polarizer shortness or sealing line.	Minor
11) Bezel appearance	Rust and deep damages that are visible in the bezel are rejected.	Minor
 Defect of land surface contact 	Evident crevices that are visible are rejected.	Minor
13) Parts mounting	 (1) Failure to mount parts (2) Parts not in the specifications are mounted (3) For example: Polarity is reversed, HSC or TCP falls off. 	Minor
14) Part alignment	(1) LSI, IC lead width is more than 50% beyond pad outline.(2) More than 50% of LSI, IC leads is off the pad outline.	Minor
15) Conductive foreign matter (solder ball, solder hips)	(1) 0.45<Φ, N≥1 (2) 0.3<Φ≤0.45, N≥1, Φ: Average diameter of solder ball (unit: mm) (3) 0.5 <l, (unit:="" average="" chip="" l:="" length="" mm)<="" n≥1,="" of="" solder="" td=""><td>Minor</td></l,>	Minor
16) Bezel flaw	Bezel claw missing or not bent	Minor

HTG9696A-31B-28C05

17) Indication on name plate (sampling indication label)

- (1) Failure to stamp or label error, or not legible (all acceptable if legible)
- 2) The separation is more than 1/3 for indication discoloration, in which the characters can be checked.

Minor

6. Handling Precautions

6.1 Mounting method

A panel of LCD module made by our company consists of two thin glass plates with polarizers that easily get damaged. And since the module in so constructed as to be fixed by utilizing fitting holes in the printed circuit board (PCB), extreme care should be used when handling the LCD modules.

6.2 Cautions of LCD handling and cleaning

When cleaning the display surface, use soft cloth with solvent (recommended below) and wipe lightly.

- -Isopropyl alcohol
- -Ethyl alcohol
- -Trichlorotriflorothane

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface.

Do not use the following solvent:

- -Water
- -Ketene
- -Aromatics

6.3 Caution against static charge

The LCD module use C-MOS LSI drivers. So we recommend you:

Connect any unused input terminal to V_{dd} or V_{ss} . Do not input any signals before power is turned on, and ground your body, work/assembly areas, assembly equipment to protect against static electricity.

6.4 Packaging

- -Module employs LCD elements, and must be treated as such. Avoid intense shock and falls from a height.
- -To prevent modules from degradation, do not operate or store them exposed direct to sunshine or high temperature/humidity.

6.5 Caution for operation

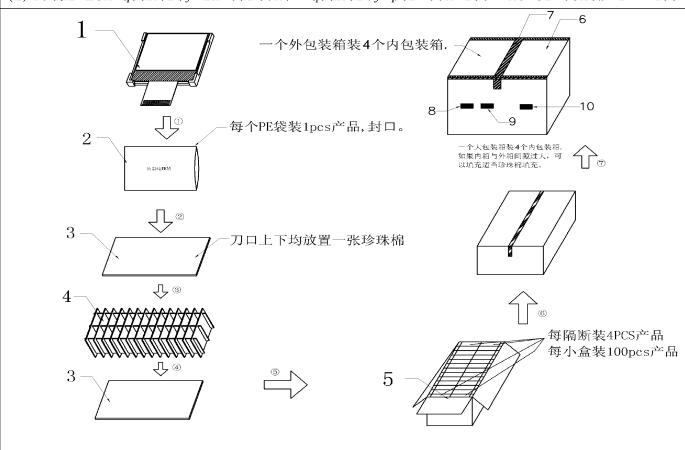
- -It is an indispensable condition to drive LCD module within the limits of the specified voltage since the higher voltage over the limits may cause the shorter life of LCD module.
- -An electrochemical reaction due to DC (direct current) causes LCD undesirable deterioration so that the uses of DC (direct current) drive should be avoided.
- -Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD module may show dark color in them. However those phenomena do not mean malfunction or out of order of LCD module, which will come back in the specified operating temperature.

6.6 Storage

In the case of storing for a long period of time, the following ways are recommended:

- -Storage in polyethylene bag with the opening sealed so as not to enter fresh air outside in it. And with not desiccant.
- -Placing in a dark place where neither exposure to direct sunlight nor light is. Keeping the storage temperature range.
- -Storing with no touch on polarizer surface by any thing else.

6.7 Safety


- -It is recommendable to crash damaged or unnecessary LCD into pieces and to wash off liquid crystal by either of solvents such as acetone and ethanol, which should be burned up later.
- -When any liquid leaked out of a damaged glass cell comes in contact with your hands, please wash it off well at once with soap and water.

7. Packaging Specifications

三八扇 洪泰	Packaging Specifications	Approved	Checked	Designed
MHOT DISPLAY	HTG9696A			

7.1 Packaging Material						
No	Item	Dimensions(mm)	1PCS Weight(KG)	Quantity	Total Weight	
1	COG	29. 9*35. 9*2. 9	0.015	400	6.0	
2	PE Bag	60*60	0.001	400	0.4	
3	Foam Rubber Cushion	310*170	0.0175	8	0.14	
4	Partition A1	310*170*100	0.30	4	1.2	
5	Product Box	330*180*120(neutral packing)	0.45	4	1.8	
6	Carton	480*390*330(neutral packing)	0. 9	1	0.9	
7	Tape			AR		
8	Label Specifications			1		
9	Label Rohs			1		
10	Label ESD			1		

- 7.2. Total LCD Weight in carton: 10.5 $KG \pm 10\%$
- 7.3. Packaging Specifications and Quantity:
- (1) Quantity Of Spacer: A1*4
- (2) Total LCM quantity in carton: quantity per box 100* no of boxes 4 = 400

